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Motivation
Existing phase discrimination methods are unreliable, having a tendency to
misclassify large liquid particles. This is problematic because larger 
particles are responsible for a majority of SO cloud mass. Our aim is to 
make a more accurate algorithm to classify cloud particle phase from 
particle images.

Data
2DS optical array probe (Figure 1)
• Imaging using diode lasers; Nominal size range: 25–1280 μm; 10 μm

resolution
• Collected data on 15 flights over SO region (Figure 2)

Model Accuracy and Evaluation

• Eliminate atypical particles in the dataset which may be reducing the accuracy of the model (such as splattered droplets)
• Tune model by trying it out with ranges of different hyperparameters
• Try different learning models (deep learning, gradient boosted tree, etc...)

Figure 1
Image of 2DS Instrument

Model Architecture
• Used segments from three flights (RF01, RF03, RF04) for ice, and from one flight (RF05) for liquid training/validation/test data
• Total of 52,000 ice and liquid particles each and a 60/20/20 training/validation/test split
• Keep ice and liquid ratios in three size classes (25-100 pixels, 100-700 pixels, 700+ pixels) same as total data distribution in the flights

Figure 2
SOCRATES Flight Tracks

Future Work

Identifying cloud phase from SOCRATES data using a random forest classification model

Summary
The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental
Study (SOCRATES) collected in-situ data on the clouds in the Southern
Ocean (SO) region, in order to gain a better understanding of their impact 
on atmospheric and ocean processes and to inform climate model 
development. SO mixed-phase clouds contain supercooled liquid water 
and ice particles simultaneously and existing algorithms struggle to identify 
the phase of SO cloud particles, so we took a machine learning approach. 
Using Two-Dimensional Stereo (2D-S) optical array probe data and 15
parameters computed from that data, we built a random forest
classification model that classifies cloud particle phase with over 90%
accuracy for large particles.

Figure 5
Example of single decision tree classifier with depth 3

Figure 3
Shadow images of Ice and Liquid data collected 

during SOCRATES
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Figure 4
Feature Importance graph shows which parameters have 

biggest impact for random forest decisions

Figure 9
Particle size distributions of liquid and ice 

from a 5-minute period show that ML 
model predicts large liquid particles better 

than existing models

Source: Litai Kang, University of Washington

Figure 7
Model confidence is higher for correctly classified particles 
(blue) and lower for incorrectly classified ones (orange).

Indicates variable and condition the tree is 
splitting on

Phase the particle is being predicted as

Figure 6
F1 scores show that the model does very 
well classifying large particles and is less 

accurate with small ice particles

Figure 8
Model confidence and accuracy has a 1:1 relationship, 
which means we can use model confidence to estimate 

the uncertainty of its predictions

Gini represents the probability of 
making an incorrect prediction at the 
split point


